

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



## Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

### Molecular Structure of the Eudesmanolide Septulinolide

David Vargas<sup>ab</sup>; Frank R. Fronczek<sup>a</sup>; Alfonso G. Ober<sup>a</sup>; Nikolaus H. Fischer<sup>a</sup>

<sup>a</sup> Department of Chemistry, Baton Rouge, LA, U.S.A <sup>b</sup> College of Basic Sciences, Louisiana State University, Baton Rouge, LA, U.S.A

**To cite this Article** Vargas, David , Fronczek, Frank R. , Ober, Alfonso G. and Fischer, Nikolaus H.(1991) 'Molecular Structure of the Eudesmanolide Septulinolide', *Spectroscopy Letters*, 24: 10, 1353 — 1362

**To link to this Article: DOI:** 10.1080/00387019108021766

**URL:** <http://dx.doi.org/10.1080/00387019108021766>

## PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

## MOLECULAR STRUCTURE OF THE EUDESMANOLIDE SEPTULINOLIDE

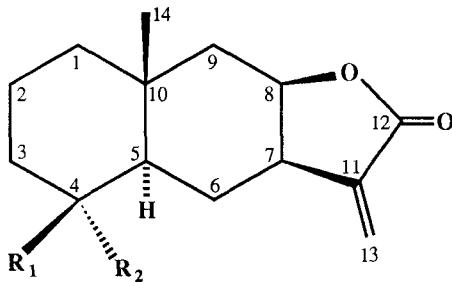
**Key Words:** *Calea septuplinervia*; eudesmanolide; septuplinolide; X-ray diffraction; COSY; NOESY; HETCOR.

David Vargas\*, Frank R. Fronczek,  
Alfonso G. Ober and Nikolaus H. Fischer<sup>†</sup>

Department of Chemistry, \*College of Basic Sciences  
Louisiana State University  
Baton Rouge, LA 70803  
U.S.A.

**Abstract:** The molecular structure of septuplinolide from *Calea septuplinervia* was determined by single crystal X-ray diffraction analysis. This requires revision of stereochemistry at C4 from 4 $\beta$ -OH to 4 $\alpha$ -OH in the septuplinolide molecule. Also, high-field  $^1\text{H}$  and  $^{13}\text{C}$  NMR spectral assignments of the lactone are given.

### INTRODUCTION


We recently reported the structure of septuplinolide, a new eudesmanolide-type sesquiterpene lactone from the Venezuelan Compositae species *Calea septuplinervia* [1]. Our structure determination was mainly based on 1-D  $^1\text{H}$  and  $^{13}\text{C}$  NMR data and spectral correlations with related eudesmanolides. The

---

<sup>†</sup> Author to whom correspondence should be addressed.

stereochemistry at the chiral center C4 was based on *in situ* acylation of the hydroxyl group with trichloroacetyl isocyanate [2]. The absence of a significant shift of the H-5 $\alpha$  signal in septuplinolide suggested a  $\beta$ -orientation of the C-4 hydroxyl group. Therefore, stereostructure 2 was suggested for septuplinolide.

In a recent attempt to selectively synthesize septuplinolide, Tada and Kanamori [3] obtained a eudesmanolide, the spectral data of which were not identical with those of the target compound. Since we were able to recrystallize the compound still available from our previous studies [1], its molecular structure was determined by single X-ray diffraction analysis. Our results are described below.



|          | R <sub>1</sub>  | R <sub>2</sub>  |
|----------|-----------------|-----------------|
| <b>1</b> | CH <sub>3</sub> | OH              |
| <b>2</b> | OH              | CH <sub>3</sub> |

## RESULTS AND DISCUSSION

**NMR data.**- High-field <sup>1</sup>H-<sup>1</sup>H 2D-COSY [5] and <sup>13</sup>C NMR spectra of septuplinolide allowed for the unambiguous assignment of the <sup>13</sup>C NMR signals. The <sup>13</sup>C-<sup>1</sup>H correlation (HETCOR) [6] in Figure 3 confirmed the multiplicities of the carbons as previously reported [1]. H-5 and H-7 are now clearly assigned to the <sup>13</sup>C signals at 51.2 and 41.1 ppm respectively. The ambiguities between C-6 (24.6 ppm) and C-9 (44.9 ppm) are now clarified in the cross-peaks of the contour plot.

The remaining three CH<sub>2</sub> signals, C-1, C-2 and C-3, could be assigned in combination with the 2D-NOESY (Figure 2) [7]. First, the

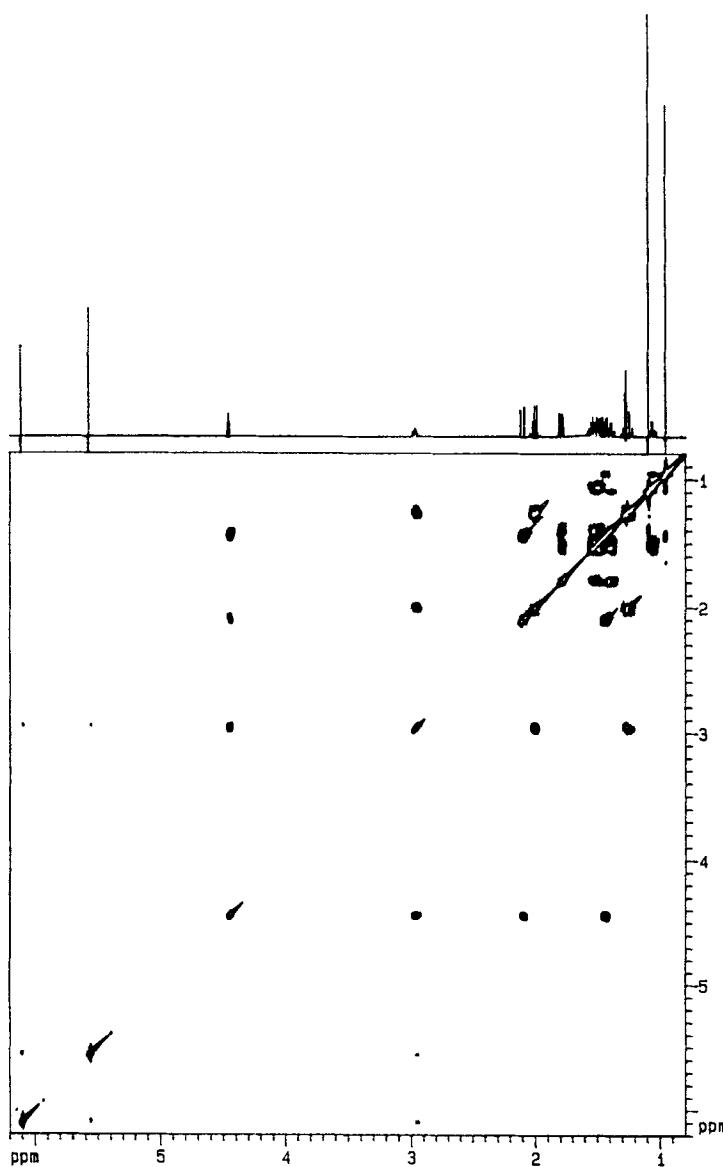



Figure 1.- 2D <sup>1</sup>H-<sup>1</sup>H COSY spectrum of septulolinolide (1).

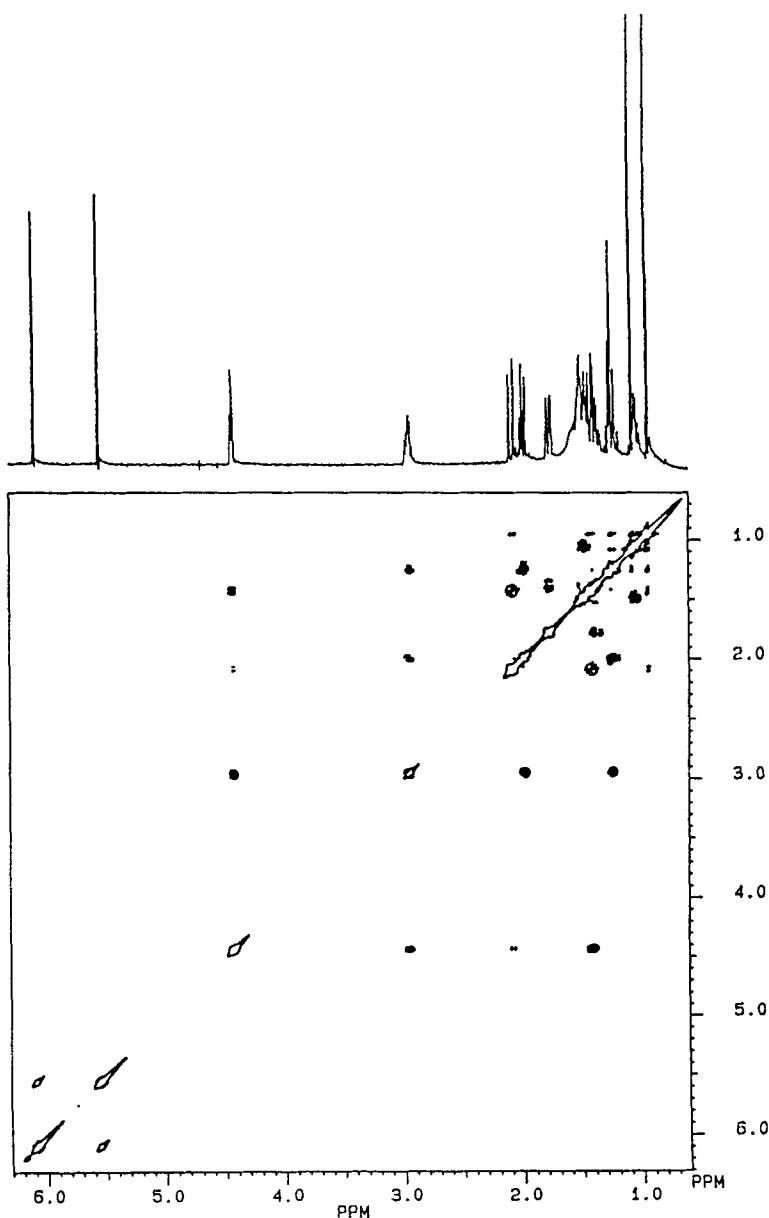



Figure 2- 2D NOESY spectrum of septuplinolide (1).

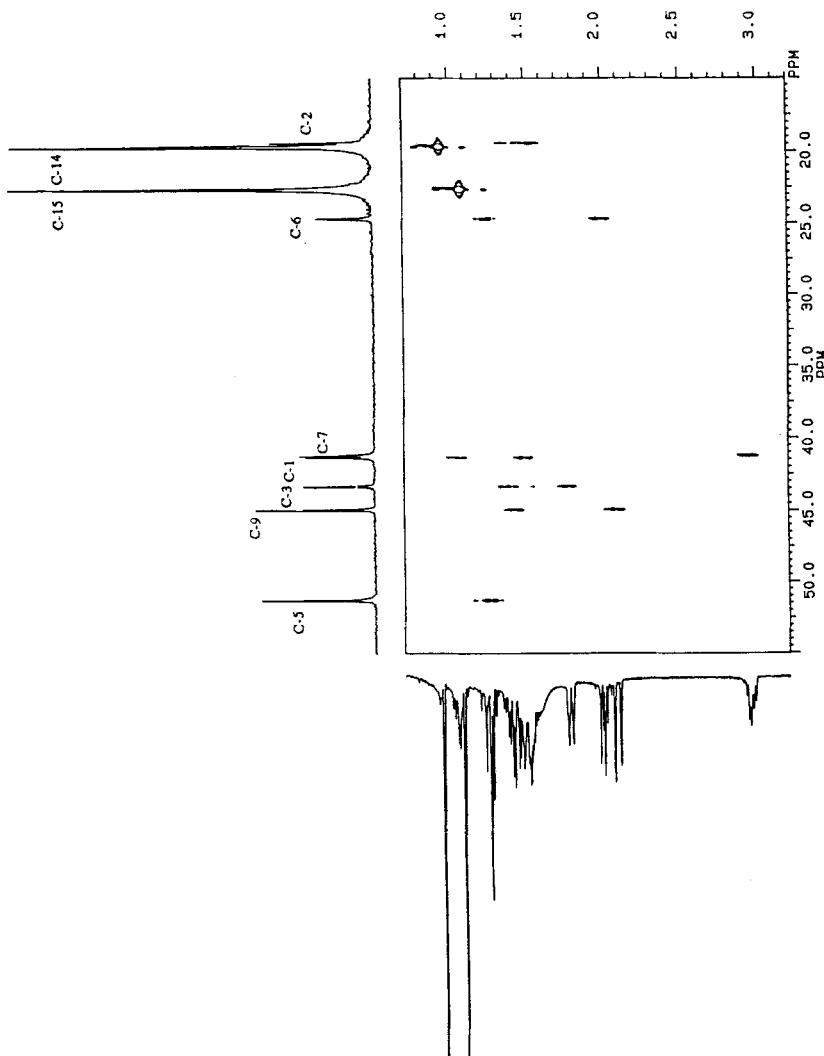



Figure 3- Upfield region of the <sup>13</sup>C-<sup>1</sup>H correlation (HETCOR) of septulinolide (1).

Table 1 .-  $^{13}\text{C}$  and  $^1\text{H}$  NMR assignments of septuolinolide (1) in  $\text{CDCl}_3$ .<sup>a</sup>

| Carbon | $\delta(^{13}\text{C})$ ppm<br>(100.62 MHz) | Proton       | $\delta(^1\text{H})$ ppm; mult. <sup>b</sup> ( $J$ ) <sup>c</sup><br>(500.13 MHz) |
|--------|---------------------------------------------|--------------|-----------------------------------------------------------------------------------|
| C-1    | 41.2                                        | H-1 $\alpha$ | 1.07; ddd brd. (13.5, 13.5, 4.2)                                                  |
|        |                                             | H-1 $\beta$  | 1.48; m obs.                                                                      |
| C-2    | 19.3                                        | H-2 $\alpha$ | 1.54; m obs.                                                                      |
|        |                                             | H-2 $\beta$  | 1.49; m obs.                                                                      |
| C-3    | 43.3                                        | H-3 $\alpha$ | 1.41 dddd (12.3, 12.3, 4.3, 0.8)                                                  |
|        |                                             | H-3 $\beta$  | 1.80 dddd (12.3, 3.1, 3.1, 1.7)                                                   |
| C-4    | 71.6                                        |              |                                                                                   |
| C-5    | 51.2                                        | H-5          | 1.28; m (11.4, 2.5)                                                               |
| C-6    | 24.6                                        | H-6 $\alpha$ | 2.01; ddd (11.4, 6.7, 2.5)                                                        |
|        |                                             | H-6 $\beta$  | 1.27; m (11.4, 5.6)                                                               |
| C-7    | 41.1                                        | H-7          | 2.96; m (11.3, 6.7, 4.8, 1.2, 1.0)                                                |
| C-8    | 76.8                                        | H-8          | 4.45; ddd (4.8, 4.8, 1.8)                                                         |
| C-9    | 44.2                                        | H-9 $\alpha$ | 1.44; ddd (15.4, 4.8, 0.9)                                                        |
|        |                                             | H-9 $\beta$  | 2.10; dd (15.4, 1.8)                                                              |
| C-10   | 33.1                                        |              |                                                                                   |
| C-11   | 141.0                                       |              |                                                                                   |
| C-12   | 170.7                                       |              |                                                                                   |
| C-13   | 120.1                                       | H-13a        | 6.10; d (1.2)                                                                     |
|        |                                             | H-13b        | 5.56; d (1.1)                                                                     |
| C-14   | 19.6                                        | 3H           | 0.94; dd (0.8, 0.9)                                                               |
| C-15   | 22.5                                        | 3H           | 1.11; d brd. (0.8)                                                                |

a.- Chemical shifts in  $\delta$  (ppm) relative to TMS.

b.- multiplicities: m= multiplet, d= doublet, brd= broad, obs= obscured due to signal overlap.

c.-J= coupling constant or line separations in herz

nOe between Me-C-4 and Me-C-10 indicates that the two methyl groups are on the same side of the molecule, as it was confirmed by the X-ray structure. Furthermore, nOe's of the angular methyl group (0.94 ppm) with H-1 $\beta$  (1.48 ppm), H-6 $\beta$  (1.26 ppm) and H-9 $\beta$  (2.01 ppm) provided the basis for the assignment of the chemical shifts and relative stereochemistry of these protons (Table 1). Likewise, the C-4-Me exhibits nOe's with H-6 $\beta$ , H-2 $\beta$  (ca. 1.49 ppm) and H-3 $\beta$  (1.79 ppm). It is noteworthy the small splitting of the two  $\text{CH}_3$  groups due to long range coupling ( $^4J$ ), with H-1 $\alpha$  and H-9 $\alpha$  for the

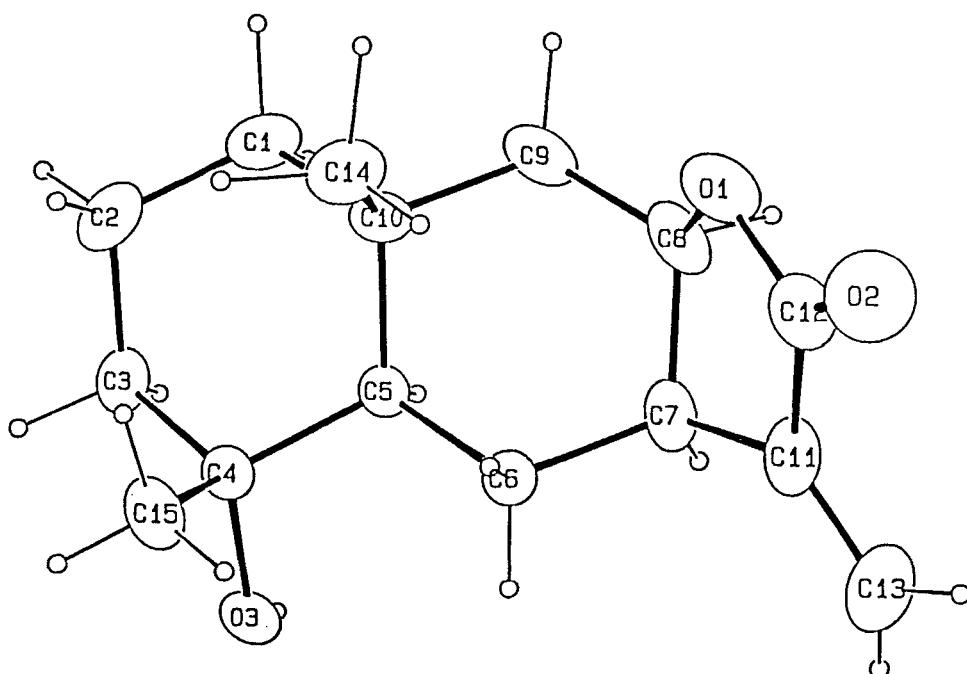



Figure 4.- X-ray molecular structure of septulinolide (1).

C-10-Me and H-3 $\alpha$  for the C-4-Me as confirmed by double resonance decoupling experiments.

*X-ray data.*- Both six-membered rings are in the chair conformation. The one consisting of C1 through C5 and C10 is a much more regular chair, having endocyclic torsions varying in magnitude over the limited range 50.5(2)-57.5(2) $^{\circ}$ . The *cis*-fusion of the lactone ring causes asymmetry in the cyclohexane ring to which it is fused, the endocyclic torsion angle about C7-C8 being -35.5(2) $^{\circ}$ , while that about C5-C10 is 62.2(2) $^{\circ}$ . The lactone ring is in the half-chair conformation with C12 on the twist axis, and the exocyclic C13-C11-C12-O2 torsion angle is -10.9(3) $^{\circ}$ . The hydroxy group is involved in intermolecular hydrogen bonds as both donor and acceptor, O3 $\cdots$ O3' 2.769(2) $\text{\AA}$ , with angle at H 173(3) $^{\circ}$ .

Table 2.- Coordinates and Equivalent Isotropic Thermal Parameters for Septuplinolide (1).

| Atom | x          | y          | z          | B <sub>eq</sub> (Å <sup>2</sup> ) |
|------|------------|------------|------------|-----------------------------------|
| O1   | 0.84546(6) | 0.33368(5) | 0          | 5.44(3)                           |
| O2   | 0.85276(7) | 0.30026(6) | -0.3083(3) | 6.63(4)                           |
| O3   | 0.95856(4) | 0.62667(4) | 0.0373(2)  | 3.25(2)                           |
| C1   | 0.80995(9) | 0.47570(9) | 0.3896(3)  | 4.82(4)                           |
| C2   | 0.80231(7) | 0.53463(8) | 0.3408(3)  | 4.72(4)                           |
| C3   | 0.86652(7) | 0.59127(6) | 0.2635(3)  | 3.67(3)                           |
| C4   | 0.89270(6) | 0.57355(5) | 0.0783(2)  | 2.75(2)                           |
| C5   | 0.89689(5) | 0.51082(5) | 0.1224(2)  | 2.62(2)                           |
| C6   | 0.92353(6) | 0.48916(6) | -0.0526(2) | 3.02(3)                           |
| C7   | 0.94290(6) | 0.43822(6) | 0.0112(3)  | 3.80(3)                           |
| C8   | 0.89052(9) | 0.38352(7) | 0.1433(3)  | 4.70(4)                           |
| C9   | 0.8536(1)  | 0.40285(7) | 0.2882(3)  | 4.80(4)                           |
| C10  | 0.83343(7) | 0.45172(6) | 0.2096(3)  | 3.49(3)                           |
| C11  | 0.94359(7) | 0.39946(7) | -0.1686(3) | 4.37(3)                           |
| C12  | 0.87771(8) | 0.33930(7) | -0.1747(4) | 4.71(4)                           |
| C13  | 0.98888(8) | 0.41270(8) | -0.3060(4) | 5.59(5)                           |
| C14  | 0.77629(8) | 0.41688(8) | 0.0590(3)  | 4.83(4)                           |
| C15  | 0.85445(7) | 0.57004(7) | -0.1098(3) | 3.83(3)                           |

$$B_{eq} = (8\pi^2/3) \sum_i \sum_j U_{ij} a_i^* a_j^* a_i \cdot a_j$$

The single crystal X-ray analysis of septuplinolide established the molecular structure as shown in Fig. 4. This requires revision of the chiral center at C4 of the molecule from stereostructure **2** to **1**.

## EXPERIMENTAL

*NMR* .-  $^1\text{H}$  and COSY [5] and NOESY [7] experiments were performed in an AMX-500 Bruker NMR spectrometer at 500.13 MHz using a 2K by 2K data matrix with zero filling on  $t_1$  after acquisition of 400 increments. A sinebell window function was applied in both dimensions prior to fourier transformation in both dimensions. The  $^{13}\text{C}$ - $^1\text{H}$  correlation (HETCOR) [6] was carried out in a Bruker AM-400 spectrometer at a  $^{13}\text{C}$  frequency of 100.62 MHz using 4K data points in the  $t_2$  dimension and 256 increments on  $t_1$ . A gaussian window function was applied in the  $t_2$  dimension and a sinebell window function was applied to the  $t_1$  dimension. Zero filling to 1K was also applied in the  $^1\text{H}$  dimension.

*X-ray* .- Data were collected on an Enraf-Nonius CAD4 diffractometer equipped with  $\text{CuK}\alpha$  radiation ( $\lambda = 1.54184 \text{ \AA}$ ) and a graphite monochromator, using a colorless crystal of dimensions  $0.10 \times 0.20 \times 0.65 \text{ mm}$ . Crystal data are as follows:  $\text{C}_{15}\text{H}_{22}\text{O}_3$ ,  $\text{FW} = 250.3$ , trigonal space group  $\text{R}\bar{3}$  with hexagonal axes  $a = 23.453(3)$ ,  $c = 6.6607(7)\text{\AA}$ ,  $V = 3172.8(7)\text{\AA}^3$ ,  $Z = 9$ ,  $D_c = 1.179 \text{ g}\cdot\text{cm}^{-3}$ ,  $\mu = 6.1 \text{ cm}^{-1}$ ,  $T = 24 \text{ }^\circ\text{C}$ . A hemisphere of data were collected by  $\omega$ - $2\theta$  scans of rates varying  $1.27 - 3.30^\circ \text{ min}^{-1}$ , within  $2 < \theta < 75^\circ$ . Data reductions included corrections for background, Lorentz-polarization, and absorption by psi scans, with minimum relative transmission coefficient 89.72%. A total of 4358 data were merged to yield 1582 unique data, of which 1505 had  $I > 3\sigma(I)$  and were used in the refinement.

The structure was solved by direct methods and refined by full-matrix least squares based on  $F$  with weights  $w = \sigma^{-2}(F)$ . Nonhydrogen atoms were treated anisotropically, while hydrogen atoms were located from difference maps and refined isotropically. At convergence,  $R = 0.026$  for 251 variables and the maximum residual density was  $0.19 \text{ e}\text{\AA}^{-3}$ . The molecular structure is illustrated in Fig. 4, and fractional coordinates are tabulated in Table 2.

## REFERENCES

1. Ober, A. G. and N. H. Fischer, *Phytochemistry*, **1987**, *26*, 848.
2. Samek, K. and M. Budesinsky, *Collect. Czech. Chem. Commun.*, **1979**, *44*, 558.
3. Tada, M. and A. Kanamori, *Chem. Letters* **1989**, 1085.
4. Bax, A., R. Freeman and G. Morris, *J. Magn. Res.*, **1981**, *42*, 164.
5. Bax, A. and R. Freeman, *J. Magn. Res.*, **1981**, *44*, 542.
6. Bodenhausen, G., H. Kogler and R. R. Ernst, *J. Magn. Res.*, **1984**, *58*, 370.
7. Bax, A. and G. Morris, *J. Magn. Res.*, **1981**, *42*, 501.(hetcor)

Date Received: 07/22/91  
Date Accepted: 09/03/91